Kinerja Grafik X-Bar menggunakan Variabel Parameter dan Double Sampling dengan Pendekatan Rantai Markov
DOI:
https://doi.org/10.36815/majamath.v4i2.1403Keywords:
double sampling, X-bar graph, markov chain, variable parameterAbstract
X-bar control chart is one of the means used to resolve problems or detect specific causes that might occur in the production process. When using charts X-bar, there are situations where the average process can diverge. If the average process of the irregularities, it takes a complex approach involving Markov chains to evaluate the properties of graphs X-bar. In this research discusses the performance of the graph X-bar using Variable Parameters and Double Sampling with Markov chain approach. Stages used is determine the state Variables Parameters and Double Sampling, making a transition matrix for Variable Parameter and Double Sampling, determining Average Time of Cycle and Average Time to Signal, comparison test, conclusions and suggestions. By comparing Variables Parameters and Double Sampling obtained a good method to use for a particular situation on the graph X-bar, that is when a small sample size using Variable Parameters and when a large sample size using Double sampling.
References
Claro, F.A.E., Costa, A.F.B., Machado, M.A.G., 2008.DOUBLE SAMPLING X ? CONTROL CHART FOR A FIRST ORDER AUTOREGRESSIVE PROCESS. Guaratinguetá, SP: São Paulo State University.
Montgomery, D.C. 2020. Introduction to Statistical Quality Control.USA: John Wiley & Sons, Inc.
Tolver, Anders. 2016. An Introduction to Markov Chains. Denmark: University of Copenhagen
Žitkovic, G., 2010. Introduction to Stochastic Processes. Austin: The University of Texas.
Teoh, W.L., Khoo, M.B.C., 2012. “Optimal Design of the Double Sampling X ?Chart Basedon Median Run Length”.International Journal of Chemical Engineering and ApplicationsVol. 3. Hal.303-306.
Costa, A.F.B, Machado, M.A.G., 2011. “Variable Parameter and Double Sampling X ? Charts in The Presence of Correlation: The Markov ChainApproach”.International Journal Production Economics Vol.130. Hal 224-229.
Ibe, O.C. 2013. Markov Processes for Stochastic Modeling. USA: University of Massachusets
Kirkwood, J. R. 2015. Markov Processes. London. CRC Press Taylor and Francis Group
Qiu, P. 2013. Introduction to Statistical Process Control. USA: University of Florida
Aslam, M., Saghir, A., Ahmad, L. 2020. Introduction to Statistical Process Control. USA: John Wiley & Sons, Inc.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 MAJAMATH: Jurnal Matematika dan Pendidikan Matematika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Seluruh artikel di jurnal ini dapat disebarluaskan dengan tetap mencamtumkan sumber yang sah. Identitas judul artikel tidak boleh dihilangkan. Penerbit tidak bertanggung jawab terhadap naskah yang diplubikasikan. Isi artikel menjadi tanggung jawab penulis.