Prediksi Jumlah Siswa Baru Menggunakan Least Square Method
DOI:
https://doi.org/10.36815/majamath.v6i1.2517Keywords:
Forecasting; Time Series; Least Square MethodAbstract
In the process of admitting new students, each school has a different strategy to increase the number of applicants and the number of students accepted. The publication strategy is structured to achieve the expected goals or to get the number of students according to the quota. The publication strategy will work well if the school has predictive data on the number of students that will come. Therefore, researchers do research with the purpose to predict the number of new students at SMA Ya Bakii 1 Kesugihan using the Trend Linear model with the Least Square to the number of new students from 2002/2003 to 2022/2023. The results of the analysis show that the Least Square Method prediction model in the form of y =49.424+4.463x gives accurate or good results with a MAPE value of 11.996%. While the prediction results for the next five years, namely 2023/2024, 2024/2025, 2025/2026, 2027/2028, and 2029/2030 are 148 students, 152 students, 157 students, 161 students, and 165 students.
References
A Restu, R., & Natarsyah, S. (2017). Penerapan Metode Least Square Untuk Prediksi Hasil Sadap Karet. Progresif, 13, 1525–1690.
Aqibah, M., Suciptawati, N. L. P., & Sumarjaya, I. W. (2020). Model Dinamis Autoregressive Distributed Lag (Studi Kasus: Pengaruh Kurs Dolar Amerika Dan Inflasi Terhadap Harga Saham Tahun 2014-2018). E-Jurnal Matematika, 9, 240–250.
Aspriyani, R., & Hartono, B. . (2022). Emotional Intelligence and Numerical Abilities: How are They Related? Jurnal Pendidikan MIPA, 23, 23–29.
Aspriyani, R., & Hartono, B. P. (2021). Analisis Kemampuan Komunikasi Matematika Siswa Ditinjau dari Motivasi Berprestasi. Edumatica: Jurnal Pendidikan Matematika, 11, 155–164.
Atti, A., Kleden, M. A., & Lobo, M. (2021). Prediksi Lama Masa Studi Mahasiswa. Jurnal Penelitian Pembelajaran Matematika, 14, 113–124.
Budiyono. (2009). Statistika untuk Penelitian. Surakarta: UNS Press.
Hidayat, A. (2017). Pengertian dan Penjelasan Uji Autokorelasi Durbin Watson. Retrieved from https://www.statistikian.com/2017/01/uji-autokorelasi-durbin-watson-spss.html, diakes tanggal 12 September 2022.
Jaya, I. D. (2019). Penerapan Metode Trend Least Square Untuk Forecasting (Prediksi) Penjualan Obat Pada Apotek. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer Dan Teknologi Informasi, 5, 1–7
Kurniayu, N., & Nurjanah. (2020). Kompetensi strategis siswa dalam menyelesaikan soal cerita ditinjau dari tipe kepribadian. JPPM (Jurnal Penelitian Pembelajaran Matematika), 13, 239–255.
Manurung, B. U. (2015). Implementasi Least Square Dalam Untuk Prediksi Penjualan Sepeda Motor ( Studi Kasus?: Pt . Graha Auto Pratama ). Jurnal Riset Komputer (JURIKOM), ISSN 2407-389X, 2, 21–24.
Nasution, A. (2018). Forecasting Produksi Karet Menggunakan. Seminar Nasional Royal (SENAR).
Nur Rachman, A., Nijamul B, A., & Muhamad SR, C. (2017). Aplikasi Forecasting untuk Prediksi Jumlah Penderita Penyakit Menggunakan Metode Regresi Linier. Informatika, 9–14.
Senitio, G. Bin, Santony, J., & Na’am, J. (2018). Tingkat Prediksi Pendaftar Ujian Kompetensi Laboratorium Menggunakan Metode Least Square. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 2, 746–752.
Triatmodjo, B. (2002). Metode Numerik. Yogyakarta: Beta Offset.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 MAJAMATH: Jurnal Matematika dan Pendidikan Matematika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Seluruh artikel di jurnal ini dapat disebarluaskan dengan tetap mencamtumkan sumber yang sah. Identitas judul artikel tidak boleh dihilangkan. Penerbit tidak bertanggung jawab terhadap naskah yang diplubikasikan. Isi artikel menjadi tanggung jawab penulis.