Analisis Kestabilan Model Susceptible Infected Isolation Hospitalized Recovered (SIIsHR) pada Penyebaran COVID-19
DOI:
https://doi.org/10.36815/majamath.v6i2.2879Keywords:
COVID-19, Model SII_sHR, Kestabilan Model, Stabil AsimtotikAbstract
This study aims to find out how big the transmission rate of COVID-19 is. The SIHR (Susceptible, Infected, Isolation, Hospitalized, Recovered) model was applied. This model has two equilibrium points, namely a disease free equilibrium point and a disease-endemic equilibrium point. The stability at the two equilibrium points is asymptotically stable. In this study, the model was simulated using COVID-19 data for DKI-Jakarta Province from 1 January 2021 to 1 January 2022. Numerical simulations with various values of the rate of treatment and self-isolation parameters were carried out to see the effect of these two parameters on reducing the spread
References
Axler, S., & Ribet, K. A. (n.d.). The Theory of Differential Equations, Second Edition: Classical and Qualitative (Universitext). www.springer.com/series/223
Bastin, G. (2018). Lectures on Mathematical Modelling of Biological Systems.
Boyce, W. E., Hamilton, E. P., & Diprima, R. C. (n.d.). Elementary Differential Equations and Boundary Value Problems , 8th Edition.
Chaudhry, M. R. A. (2022). Coronavirus infection outbreak. In Coronavirus Disease (pp. 47–57). Elsevier. https://doi.org/10.1016/B978-0-12-824409-8.00009-6
Complex_Variables-Fisher. (n.d.).
Coronavirus Disease 2019 (COVID-19) . (2022). Cdc. https://www.cdc.gov/dotw/covid-19/index.html
Data Pemantauaan COVID-19 DKI-JAKARTA. (2023). COVID-19 DKI-JAKARTA. https://corona.jakarta.go.id/id/data-pemantauan
Diekmann, O., Heesterbeek, J. A. P., & Roberts, M. G. (2010). The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society Interface, 7(47), 873–885. https://doi.org/10.1098/rsif.2009.0386
Elementary Differential. (n.d.).
Gebremeskel, A. A., Berhe, H. W., & Abay, A. T. (2022). A Mathematical Modelling and Analysis of COVID-19 Transmission Dynamics with Optimal Control Strategy. Computational and Mathematical Methods in Medicine, 2022, 1–15. https://doi.org/10.1155/2022/8636530
Keno, T. D., & Etana, H. T. (2023). Optimal Control Strategies of COVID-19 Dynamics Model. Journal of Mathematics, 2023, 1–20. https://doi.org/10.1155/2023/2050684
Lynch, S. (2007). Dynamical systems with applications using mathematica. Birkha?user.
Rokom. (2022). Kasus Konfirrmasi Turun, Pemerintah Terus Perkuat Upaya Pencegahan. KEMENKES. https://www.sehatnegriku.kemekes.go.id
Shah, N. H., Suthar, A. H., & Jayswal, E. N. (2020). Control Strategies to Curtail Transmission of COVID-19. International Journal of Mathematics and Mathematical Sciences, 2020, 1–12. https://doi.org/10.1155/2020/2649514
van den Driessche, P., & Watmough, J. (2008). Further Notes on the Basic Reproduction Number (pp. 159–178). https://doi.org/10.1007/978-3-540-78911-6_6
Downloads
Published
Issue
Section
License
Copyright (c) 2023 MAJAMATH: Jurnal Matematika dan Pendidikan Matematika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Seluruh artikel di jurnal ini dapat disebarluaskan dengan tetap mencamtumkan sumber yang sah. Identitas judul artikel tidak boleh dihilangkan. Penerbit tidak bertanggung jawab terhadap naskah yang diplubikasikan. Isi artikel menjadi tanggung jawab penulis.