Analisis Kestabilan Model Susceptible Infected Isolation Hospitalized Recovered (SIIsHR) pada Penyebaran COVID-19

Authors

  • Aliffia Dewi Putri universitas andalas
  • Susila Bahri Universitas Andalas
  • Ahmad Iqbal Baqi Universitas Andalas

DOI:

https://doi.org/10.36815/majamath.v6i2.2879

Keywords:

COVID-19, Model SII_sHR, Kestabilan Model, Stabil Asimtotik

Abstract

This study aims to find out how big the transmission rate of COVID-19 is. The SIHR (Susceptible, Infected, Isolation, Hospitalized, Recovered) model was applied. This model has two equilibrium points, namely a disease free equilibrium point and a disease-endemic equilibrium point. The stability at the two equilibrium points is asymptotically stable. In this study, the model was simulated using COVID-19 data for DKI-Jakarta Province from 1 January 2021 to 1 January 2022. Numerical simulations with various values of the rate of treatment and self-isolation parameters were carried out to see the effect of these two parameters on reducing the spread

References

Axler, S., & Ribet, K. A. (n.d.). The Theory of Differential Equations, Second Edition: Classical and Qualitative (Universitext). www.springer.com/series/223

Bastin, G. (2018). Lectures on Mathematical Modelling of Biological Systems.

Boyce, W. E., Hamilton, E. P., & Diprima, R. C. (n.d.). Elementary Differential Equations and Boundary Value Problems , 8th Edition.

Chaudhry, M. R. A. (2022). Coronavirus infection outbreak. In Coronavirus Disease (pp. 47–57). Elsevier. https://doi.org/10.1016/B978-0-12-824409-8.00009-6

Complex_Variables-Fisher. (n.d.).

Coronavirus Disease 2019 (COVID-19) . (2022). Cdc. https://www.cdc.gov/dotw/covid-19/index.html

Data Pemantauaan COVID-19 DKI-JAKARTA. (2023). COVID-19 DKI-JAKARTA. https://corona.jakarta.go.id/id/data-pemantauan

Diekmann, O., Heesterbeek, J. A. P., & Roberts, M. G. (2010). The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society Interface, 7(47), 873–885. https://doi.org/10.1098/rsif.2009.0386

Elementary Differential. (n.d.).

Gebremeskel, A. A., Berhe, H. W., & Abay, A. T. (2022). A Mathematical Modelling and Analysis of COVID-19 Transmission Dynamics with Optimal Control Strategy. Computational and Mathematical Methods in Medicine, 2022, 1–15. https://doi.org/10.1155/2022/8636530

Keno, T. D., & Etana, H. T. (2023). Optimal Control Strategies of COVID-19 Dynamics Model. Journal of Mathematics, 2023, 1–20. https://doi.org/10.1155/2023/2050684

Lynch, S. (2007). Dynamical systems with applications using mathematica. Birkha?user.

Rokom. (2022). Kasus Konfirrmasi Turun, Pemerintah Terus Perkuat Upaya Pencegahan. KEMENKES. https://www.sehatnegriku.kemekes.go.id

Shah, N. H., Suthar, A. H., & Jayswal, E. N. (2020). Control Strategies to Curtail Transmission of COVID-19. International Journal of Mathematics and Mathematical Sciences, 2020, 1–12. https://doi.org/10.1155/2020/2649514

van den Driessche, P., & Watmough, J. (2008). Further Notes on the Basic Reproduction Number (pp. 159–178). https://doi.org/10.1007/978-3-540-78911-6_6

Downloads

Published

2023-09-29