Solusi Model Navier Stokes Korteweg dengan Syarat Batas Slip di Half-Space Berdimensi 3

Authors

  • Anisa Salsabila UIN Syarif Hidayatullah Jakarta
  • Suma Inna UIN Syarif Hidayatullah Jakarta
  • Muhaza Liebenlito UIN Syarif Hidayatullah Jakarta
  • Rahmi Purnomowati UIN Syarif Hidayatullah Jakarta

DOI:

https://doi.org/10.36815/majamath.v7i1.3158

Keywords:

Navier Stokes Korteweg, sistem persamaan resolvent, operator solusi, transformasi Fourier parsial

Abstract

Model Navier Stokes Kortewege merupakan model yang mendeskripsikan aliran fluida termampatkan dengan mempertimbangkan konstanta kapilaritas ( ) yang dikenal sebagai konstanta kapiler. Adapun penelitian ini bertujuan untuk membuktikan keberadaan operator solusi sistem persamaan resolvent model Navier Stokes Kortewege dengan syarat batas slip di half-space berdimensi 3  khususnya pada kasus koefisien  dan . Dalam mencari operator solusi sistem persamaan resolvent tersebut dilakukan beberapa langkah, seperti melakukan reduksi terhadap sistem persamaan resolvent tak homogen, kemudian dilakukan transformasi Fourier parsial terhadap sistem persamaan resolvent homogen untuk memperoleh persamaan diferensial biasa yang lebih sederhana. Sehingga, diperoleh operator solusi .

References

Danchin, R., & Desjardins, B. (2001). Existence of solutions for compressible fluid models of korteweg type. Annales de l’Institut Henri Poincare (C) Analyse Non Lineaire, 18(1), 97–133. https://doi.org/10.1016/S0294-1449(00)00056-1

Dunn, J. E., & Serrin, J. (1985). On the thermomechanics of interstitial working. Archive for Rational Mechanics and Analysis, 88, 95–133. https://api.semanticscholar.org/CorpusID:121445779

Fox, R. W., Mcdonald, A. T., Pritchard, P. J., & Leylegian, J. C. (2011). Fox and McDonald’s introduction to fluid mechanics. John Wiley & Sons, Inc.

Haspot, B. (2009). Existence of weak solution for compressible fluid models of Korteweg type. https://doi.org/10.1007/s00021-009-0013-2

Hattori, H. H. H., & Li, D. (1996). Global Solutions of a High Dimensional System for Korteweg Materials. Dalam JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS (Vol. 198).

Hattori, H., & Li, D. (1994). Solutions for Two-Dimensional System for Materials of Korteweg Type. SIAM Journal on Mathematical Analysis, 25(1), 85–98. https://doi.org/10.1137/S003614109223413X

Inna, S. The Existence Of R-Bounded Solution Operator For Navier Stokes Korteweg Model With Slip Boundary Conditions In Half Space. Mathematical Method in The Applied Science, to appear.

Inna, S., Fauziah, I., Manaqib, M., & Maya Putri, P. (2023). Operator Solusi Model Fluida Termampatkan Tipe Korteweg Dengan Kondisi Batas Slip di Half-Space Kasus Koefisien ((?+v)/2?)^2-1/?<0, ? =?? ,???. Limits: Journal of Mathematics and Its Applications, 20(2), 191. https://doi.org/10.12962/limits.v20i2.12954

Inna, S., Maryani, S., & Saito, H. (2020). Half-space model problem for a compressible fluid model of Korteweg type with slip boundary condition. Journal of Physics: Conference Series, 1494(1). https://doi.org/10.1088/1742-6596/1494/1/012014

Inna, S., & Saito, H. (2023). Local Solvability for a Compressible Fluid Model of Korteweg Type on General Domains. Mathematics, 11(10). https://doi.org/10.3390/math11102368

Kotschote, M. (2008). Strong solutions for a compressible fluid model of Korteweg type. Annales de l’Institut Henri Poincare (C) Analyse Non Lineaire, 25(4), 679–696. https://doi.org/10.1016/j.anihpc.2007.03.005

Liu, J., Landis, C. M., Gomez, H., & Hughes, T. J. R. (2015). Liquid–vapor phase transition: Thermomechanical theory, entropy stable numerical formulation, and boiling simulations. Computer Methods in Applied Mechanics and Engineering, 297, 476–553. https://doi.org/https://doi.org/10.1016/j.cma.2015.09.007

Saito, H. (2019). Existence of R-bounded solution operator families for a compressible fluid model of Korteweg type on the half-space. http://arxiv.org/abs/1901.06461

Suma’inna. (2018). The existence of R-bounded solution operators of the thermoelastic plate equation with Dirichlet boundary conditions. Mathematical Methods in the Applied Sciences, 41(4), 1578–1599. https://doi.org/10.1002/mma.4687

Downloads

Published

2024-03-23