Aproksimasi Solusi Persamaan Diferensial Osilator Fraksional Menggunakan Metode Analisis Homotopi Laplace

Authors

  • Nirbhaya Salsabila Universitas Padjadjaran
  • Endang Rusyaman Universitas Padjadjaran
  • Eddy Djauhari Universitas Padjadjaran

DOI:

https://doi.org/10.36815/majamath.v3i2.816

Keywords:

Persamaan diferensial osilator fraksional, Metode analisis homotopi laplace, kekonvergenan

Abstract

Persamaan diferensial pecahan telah menarik banyak ahli untuk meneliti lebih dalam karena sangat membantu dalam pemodelan berbagai masalah, seperti persamaan diferensial osilator pecahan. Telah banyak metode yang digunakan untuk menyelesaikan masalah tersebut, diantaranya Metode Analisis Homotopi Laplace yang merupakan gabungan dari Transformasi Laplace dan Metode Analisis Homotopi. Penulis menggunakan metode ini untuk mencari solusi persamaan diferensial osilator pecahan nonlinier. Selanjutnya dapat diamati hubungan konvergensi antara orde persamaan diferensial osilator pecahan dan urutan fungsi solusi persamaan diferensial osilator pecahan.

References

Al-Rabtah, A., Erturk, V. S., & Momani, S. 2010. Solutions of a Fractional Oscillator by Using Differential Transform Method. Computers & Mathematics with Applications, 1356-1362.
Barari, A., Omidvar, A., Ghotbi, A. R., & Ganji, D. D. 2008. Application of Homotopy Perturbation Method and Variational Iteration Method to Nonlinear Oscillator Differential Equations. Acta Applicandae Mathematicae, 161-171.
Blaszczyk, T. 2009. Application of the Rayleigh-Ritz Method for Solving Fractional Oscillator Equation. Scientific Research of the Institute of Mathematics and Computer Science, 29-36.
Ibrahim, R., & Momani, S. 2007. Analytical Solutions of A Fractional Oscillator by the Decomposition Method. International Journal of Pure and Applied Mathematics, 119-131.
Liao, S. 1992. The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. Shanghai: Shanghai Jiao Tong University.
Liao, S. 1998. Application of Homotopy Analysis Method in Nonlinear Oscillations. ASME Journal of Applied Mechanics, 914-922.
Mainardi, F. 1997. Fractional Calculus: some Basic Problem in Continuum and Statistical Mechanics. Fractals and Fractional Calculus in Continuum Mechanics, 291-348.
Rusyaman, E., Chaerani, D., & Parmikanti, K. 2017. Fractional Differential Equation as a Models of Newton Fluids for Stress and Strain Problems. Advances in Social Science, Education and Humanities Research, 241-246.

Yildirim, A., & Momani, S. 2012. Series Solutions of Fractional Oscillator by Means of the Homotopy Perturbation Method. International Journal of Computer Mathematics, 13-20.
Zurigat, M. 2011. Solving Fractional Oscillators Using Laplace Homotopy Analysis Method. Annals of the University of Craiova, Mathematics and Computer Science Series, 1-11.

Downloads

Published

2020-09-29