Studi Numerik Pengaruh Aliran Aksial Terhadap Aliran Taylor Vortex Turbulent Dengan Perpindahan Kalor
DOI:
https://doi.org/10.36815/majamecha.v6i1.3249Keywords:
Taylor Vortex Turbulent, Perpindahan kalor, Numerik, Koefisien perpindahan kalor, TorsiAbstract
Pengaruh aliran aksial terhadap aliran Taylor Vortex Turbulent dengan perpindahan kalor dengan teliti dengan menggunakan metode numerik. Parameter geometri pada penilitian dengan radius ratio 0, 714 dan aspect ratio 10 dengan bilangan Reynold melingkar antara 2596 sampai dengan 9087, kemudian Aliran aksial dengan temperatur pada silinder dalam (Ti) yaitu sebesar 50 °C dan temperatur silinder luar (To) adalah 90 °C . Hasil penelitian menunjukan bahwa Aliran turbulen dalam aliran Taylor-Couette dengan aliran aksial dicirikan oleh struktur vortex yang kompleks dan tidak beraturan. Koefisien perpindahan kalor pada kondisi konveksi di sekitar silinder dalam lebih tinggi dibandingkan dengan kondisi sedangkan untuk silinder luar kondisi diam dengan no slip condition. Peningkatan torsi akibat putaran silinder dalam aliran dipengaruhi oleh sel-sel vortex dalam aliran turbulen, yang juga menyebabkan kenaikan torsi gesekan.
References
Abou-Ziyan, H., Ameen, R., & Elsayed, K. (2021). Fluid flow and convection heat transfer in concentric and eccentric cylindrical annuli of different radii ratios for Taylor-Couette-Poiseuille flow. Advances in Mechanical Engineering, 13(8), 1–22. https://doi.org/10.1177/16878140211040731
Adrian, B. (2013). CONVECTION HEAT Other books by Adrian Bejan?:
Altmeyer, S., & Do, Y. (2019). Effects of an imposed axial flow on a Ferrofluidic Taylor-Couette flow. Scientific Reports, 9(1), 1–20. https://doi.org/10.1038/s41598-019-51935-x
Assagaf, I. P. A. (2019). Flow and Torque Characteristic Taylor-Couette Flow With Heat. 10(07), 197–207.
Assagaf, I. P. A., Studi, P., Manufaktur, T., Agro, I., & Makassar, P. A. T. I. (2021). STUDI NUMERIK ALIRAN DAN TORSI PADA ALIRAN TAYLOR VORTEX TURBULENT DENGAN PERPINDAHAN KALOR. 0–4.
Chen, S. J., Chang, Y., Liang, C. S., Lin, J. P., & Lu, Y. W. (2022). Platelet concentrates preparation using a rotating membrane with Taylor vortices and axial flow. Separation and Purification Technology, 297(May), 121446. https://doi.org/10.1016/j.seppur.2022.121446
D. Anderson, J. (1995). Computational fluid dynamics, second edition. In Computational Fluid Dynamics: The basics with Applications.
Dumont, E., Fayolle, F., Sobolík, V., & Legrand, J. (2001). Wall shear rate in the Taylor-Couette-Poiseuille flow at low axial Reynolds number. International Journal of Heat and Mass Transfer, 45(3), 679–689. https://doi.org/10.1016/S0017-9310(01)00183-1
Hosain, M. L., Bel Fdhila, R., & Rönnberg, K. (2017). Taylor-Couette flow and transient heat transfer inside the annulus air-gap of rotating electrical machines. Applied Energy, 207, 624–633. https://doi.org/10.1016/j.apenergy.2017.07.011
Ilin, K., & Morgulis, A. (2020). On the stability of the Couette–Taylor flow between rotating porous cylinders with radial flow. European Journal of Mechanics, B/Fluids, 80(November), 174–186. https://doi.org/10.1016/j.euromechflu.2019.11.004
Lancial, N., Torriano, F., Beaubert, F., Harmand, S., & Rolland, G. (2017). Taylor-Couette-Poiseuille flow and heat transfer in an annular channel with a slotted rotor. International Journal of Thermal Sciences, 112, 92–103. https://doi.org/10.1016/j.ijthermalsci.2016.09.022
Liu, D., Song, Y. Z., Sun, S. L., Yang, S., Ahmed, B., & Muhammad, T. (2024). Heat transfer performance and entropy generation analysis of Taylor–Couette flow with helical slit wall. Case Studies in Thermal Engineering, 53(December 2023), 1–14. https://doi.org/10.1016/j.csite.2023.103852
Liu, Y. Q., & Zhu, K. Q. (2010). Axial Couette-Poiseuille flow of Bingham fluids through concentric annuli. Journal of Non-Newtonian Fluid Mechanics, 165(21–22), 1494–1504. https://doi.org/10.1016/j.jnnfm.2010.07.013
Martínez-Arias, B., & Peixinho, J. (2017). Torque in Taylor–Couette flow of viscoelastic polymer solutions. Journal of Non-Newtonian Fluid Mechanics, 247, 221–228. https://doi.org/10.1016/j.jnnfm.2017.07.005
Masuda, H., Iyota, H., & Ohmura, N. (2023). Numerical Simulation during Development of Taylor-Couette Flow with Shear-thinning Fluids. Chemical Engineering Transactions, 100(April), 307–312. https://doi.org/10.3303/CET23100052
Mehrez, I., Gheith, R., Aloui, F., & Ben Nasrallah, S. (2019). Theoretical and numerical study of Couette?Taylor flow with an axial flow using lattice Boltzmann method. International Journal for Numerical Methods in Fluids, 90(9), 427–441. https://doi.org/10.1002/fld.4727
Mulligan, S., De Cesare, G., Casserly, J., & Sherlock, R. (2018). Understanding turbulent free-surface vortex flows using a Taylor-Couette flow analogy. Scientific Reports, 8(1), 1–14. https://doi.org/10.1038/s41598-017-16950-w
Nicoli, A., Johnson, K., & Jefferson-Loveday, R. (2022). Computational modelling of turbulent Taylor–Couette flow for bearing chamber applications: A comparison of unsteady Reynolds-averaged Navier–Stokes models. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 236(5), 985–1005. https://doi.org/10.1177/09576509221075516
Poncet, S., Haddadi, S., & Viazzo, S. (2011). Numerical modeling of fluid flow and heat transfer in a narrow Taylor-Couette-Poiseuille system. International Journal of Heat and Fluid Flow, 32(1), 128–144. https://doi.org/10.1016/j.ijheatfluidflow.2010.08.003
Qin, K., Li, D., Huang, C., Sun, Y., Wang, J., & Luo, K. (2020). Numerical investigation on heat transfer characteristics of Taylor Couette flows operating with CO2. Applied Thermal Engineering, 165(April 2019), 114570. https://doi.org/10.1016/j.applthermaleng.2019.114570
Seeni, A., Rajendran, P., & Mamat, H. (2019). A CFD mesh independent solution technique for low reynolds number propeller. CFD Letters, 11(10), 15–30.
Sun, S. L., Liu, D., Wang, Y. Z., Qi, Y. L., & Kim, H. B. (2023). Convective heat transfer and entropy generation evaluation in the Taylor–Couette flow under the magnetic field. International Journal of Mechanical Sciences, 252(February), 108373. https://doi.org/10.1016/j.ijmecsci.2023.108373
Swann, P. B., Russell, H., & Jahn, I. H. (2021). Taylor-couette-poiseuille flow heat transfer in a high taylor number test rig. Journal of the Global Power and Propulsion Society, 5, 126–147. https://doi.org/10.33737/jgpps/140252
Wilcox, D. C. (1993). Turbulence Modelling for CFD 3rd Edition. In Turbulence Modeling for CFD. http://www.dcwindustries.com
Yunus, & Cengel, A. (2004). Heat Transference a Practical Approach. MacGraw-Hill, 4(9), 874.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Majamecha
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Seluruh artikel di jurnal ini dapat disebarluaskan dengan tetap mencamtumkan sumber yang sah. Identitas judul artikel tidak boleh dihilangkan. Penerbit tidak bertanggung jawab terhadap naskah yang diplubikasikan. Isi artikel menjadi tanggung jawab penulis.