Model Validasi Ukuran Droplet Batuk Dalam Ruangan Menggunakan Pendekatan Multicomponent Eulerian -Lagrangian

Authors

  • Mohammad Muslimin Universitas Islam Majapahit
  • Atika Isnaining Dyah Universitas Islam Majapahit
  • Luthfi Hakim Universitas Islam Majaphit

DOI:

https://doi.org/10.36815/majamecha.v5i2.2856

Keywords:

droplet, evaporasi, inti droplet, CFD

Abstract

Penelitian ini dilakukan secara numerik menggunakan pendekatan Multicomponent- Eulerian-Langgrangian untuk melihat medan aliran udara dan pola penyebaran droplet aerosol dalam ruangan. Pola penyebaran dan perubahan ukuran droplet diprediksi secara akurat dengan bantuan software CFD komersial. Melalui pendekatan Multicomponent- Eulerian-Langgrangian udara basah diperlakukan sebagai campuran ideal antara udara kering dengan uap air. Sedangkan droplet yang dikeluarkan dari seseorang ketika batuk diasumsikan terdiri dari 98% air dan 2 partikel padat yang tidak dapat menguap. Simulasi dilakukan pada kondisi kelembapan udara 50% dan didasarkan pada aktivitas sesorang ketika batuk, dengan kecepatan droplet saat keluar sumber adalah 10 m/s. Variasi ukuran droplet mula-mula adalah 10 µm dan 100 µm. Karena mengalami evaporasi, diameter droplet mula-mula akan mengalami pengurangan ukuran hingga 21% menjadi 2,1 µm dan 21,03 µm membentuk inti droplet (droplet nuclei). Selain itu, hasil simulasi menunjukkan sebaran droplet melaui particle residence time dan lintasan partikel dalam ruangan. Sehingga mampu memprediksi pola penyebaran droplet yang ada dalam ruangan.

References

Arjmandi, H., Amini, R., khani, F., & Fallahpour, M. (2022). Minimizing the respiratory pathogen transmission: Numerical study and multi-objective optimization of ventilation systems in a classroom. Thermal Science and Engineering Progress, 28(August 2021), 101052. https://doi.org/10.1016/j.tsep.2021.101052

Ascione, F., De Masi, R. F., Mastellone, M., & Vanoli, G. P. (2021). The design of safe classrooms of educational buildings for facing contagions and transmission of diseases: A novel approach combining audits, calibrated energy models, building performance (BPS) and computational fluid dynamic (CFD) simulations. Energy and Buildings, 230, 110533. https://doi.org/10.1016/j.enbuild.2020.110533

Chan, J. F. W., Yuan, S., Kok, K. H., To, K. K. W., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C. C. Y., Poon, R. W. S., Tsoi, H. W., Lo, S. K. F., Chan, K. H., Poon, V. K. M., Chan, W. M., Ip, J. D., Cai, J. P., Cheng, V. C. C., Chen, H., … Yuen, K. Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet, 395(10223), 514–523. https://doi.org/10.1016/S0140-6736(20)30154-9

Diwan, S. S., Ravichandran, S., Govindarajan, R., & Narasimha, R. (2020). Understanding Transmission Dynamics of COVID-19-Type Infections by Direct Numerical Simulations of Cough/Sneeze Flows. Transactions of the Indian National Academy of Engineering, 5(2), 255–261. https://doi.org/10.1007/s41403-020-00106-w

Ghinai, I., McPherson, T. D., Hunter, J. C., Kirking, H. L., Christiansen, D., Joshi, K., Rubin, R., Morales-Estrada, S., Black, S. R., Pacilli, M., Fricchione, M. J., Chugh, R. K., Walblay, K. A., Ahmed, N. S., Stoecker, W. C., Hasan, N. F., Burdsall, D. P., Reese, H. E., Wallace, M., … Layden, J. E. (2020). First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA. The Lancet, 395(10230), 1137–1144. https://doi.org/10.1016/S0140-6736(20)30607-3

Gralton, J., Tovey, E. R., McLaws, M.-L., & Rawlinson, W. D. (20013). Respiratory Virus RNA Is Detectable in Airborne and Droplet Particles. Journal of Medical Virology, 55(November 2005), 52–55. https://doi.org/10.1002/jmv

Kao, P. H., & Yang, R. J. (2006). Virus diffusion in isolation rooms. Journal of Hospital Infection, 62(3), 338–345. https://doi.org/10.1016/j.jhin.2005.07.019

Knibbs, L. D., Morawska, L., & Bell, S. C. (2012). The risk of airborne influenza transmission in passenger cars. Epidemiology and Infection, 140(3), 474–478. https://doi.org/10.1017/S0950268811000835

Li, D., Yan, W., Zhang, Y., & Sun, Y. (2009). Experimental and CFD study of unsteady airborne pollutant transport within an aircraft cabin mock-up. Building and Environment, 44(1), 34–43. https://doi.org/10.1016/j.buildenv.2008.01.010

Li, X., Shang, Y., Yan, Y., Yang, L., & Tu, J. (2018). Modelling of evaporation of cough droplets in inhomogeneous humidity fields using the multi-component Eulerian-Lagrangian approach. Building and Environment, 128(November 2017), 68–76. https://doi.org/10.1016/j.buildenv.2017.11.025

Li, Y., Leung, G. M., Tang, J. W., Yang, X., Chao, C. Y. H., Lin, J. Z., Lu, J. W., Nielsen, P. V., Niu, J., Qian, H., Sleigh, A. C., Su, H. J. J., Sundell, J., Wong, T. W., & Yuen, P. L. (2007). Role of ventilation in airborne transmission of infectious agents in the built environment - A multidisciplinary systematic review. Indoor Air, 17(1), 2–18. https://doi.org/10.1111/j.1600-0668.2006.00445.x

Lim, T., Cho, J., & Kim, B. S. (2010a). The influence of ward ventilation on hospital cross infection by varying the location of supply and exhaust air diffuser using CFD. Journal of Asian Architecture and Building Engineering, 9(1), 259–266. https://doi.org/10.3130/jaabe.9.259

Lim, T., Cho, J., & Kim, B. S. (2010b). The predictions of infection risk of indoor airborne transmission of diseases in high-rise hospitals: Tracer gas simulation. Energy and Buildings, 42(8), 1172–1181. https://doi.org/10.1016/j.enbuild.2010.02.008

Liu, J., Liao, X., Qian, S., Yuan, J., Wang, F., Liu, Y., Wang, Z., Wang, F., Liu, L., & Zhang, Z. (2020). Community Transmission of Severe Acute Respiratory. Emerging Infectious Diseases, 26(6), 1320–1323.

Mirzaie, M., Lakzian, E., Khan, A., Warkiani, M. E., Mahian, O., & Ahmadi, G. (2021). COVID-19 spread in a classroom equipped with partition – A CFD approach. Journal of Hazardous Materials, 420(June), 126587. https://doi.org/10.1016/j.jhazmat.2021.126587

Morawska, L. (2006). Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air, 16(5), 335–347. https://doi.org/10.1111/j.1600-0668.2006.00432.x

Morawska, L., & Cao, J. (2020). Airborne transmission of SARS-CoV-2: The world should face the reality. Environment International, 139(April), 105730. https://doi.org/10.1016/j.envint.2020.105730

Santarpia, J. L., Herrera, V. L., Rivera, D. N., Ratnesar-shumate, S., Reid, P., Denton, P. W., Martens, J. W. S., Fang, Y., Conoan, N., Callahan, V., Lawler, J. V, Brett-major, D. M., & Lowe, J. J. (2020). The Infectious Nature of Patient-Generated SARS-CoV-2 Aerosol Joshua. Cdc.

Sheikhnejad, Y., Aghamolaei, R., Fallahpour, M., Motamedi, H., Moshfeghi, M., Mirzaei, P. A., & Bordbar, H. (2022). Airborne and aerosol pathogen transmission modeling of respiratory events in buildings: An overview of computational fluid dynamics. Sustainable Cities and Society, 79(January), 103704. https://doi.org/10.1016/j.scs.2022.103704

Wang, J. X., Cao, X., & Chen, Y. P. (2021). An air distribution optimization of hospital wards for minimizing cross-infection. Journal of Cleaner Production, 279, 123431. https://doi.org/10.1016/j.jclepro.2020.123431

WHO. (2014). Infection prevention and control of epidemic- and pandemic-prone acute respiratory infections in health care. The International Encyclopedia of Biological Anthropology, 1–2. https://doi.org/10.1002/9781118584538.ieba0303

Yang, L., Liu, X., Qian, F., & Du, S. (2019). Ventilation effect on different position of classrooms in “line” type teaching building. Journal of Cleaner Production, 209, 886–902. https://doi.org/10.1016/j.jclepro.2018.10.228

Zhu, S., Demokritou, P., & Spengler, J. (2010). Experimental and numerical investigation of micro-environmental conditions in public transportation buses. Building and Environment, 45(10), 2077–2088. https://doi.org/10.1016/j.buildenv.2010.03.004

Downloads

Published

2023-12-22

How to Cite

Muslimin, M., Dyah, A. I., & Hakim, L. (2023). Model Validasi Ukuran Droplet Batuk Dalam Ruangan Menggunakan Pendekatan Multicomponent Eulerian -Lagrangian. Majamecha, 5(2), 48–61. https://doi.org/10.36815/majamecha.v5i2.2856

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>