Analisa Numerik Profil Kecepatan Udara Pada Square Duct Bend 90-Derajat
DOI:
https://doi.org/10.36815/majamecha.v1i2.546Keywords:
Profil, Kecepatan, Square ductAbstract
Profil kecepatan udara pada square duct bend 90-derajat akan dimodelkan secara matematis. Pemodelan dilakukan untuk mendapatkan taksiran dari nilai maksimum profil kecepatan udara pada square duct bend 90-derajat yang sudah terpengaruh oleh pemasangan double damper 30-derajat. Persamaan Navier-stokes pada kondisi unsteady incompressible diterapkan pada kasusu ini, kemudian diselesaikan menggunakan metode elemen hingga dan algoritma SIMPLE. Penyelesaian secara numerik di lakukan untuk menentukan profil kecepatan aliran udara pada (tepat sebelum double damper dipasang), kemudian digunakan metode regresi dalam menentukan model matematika dari profil kecepatannya. Dari persamaan profil kecepatan pada , diperoleh nilai maksim dan minimumnya.
References
Didwania, M., Singh, L., Malik, A., & Sisodiya, M. S. (2014). Analysis of Turbulent Flow over a 90 ° Bend of Duct Using In Centralized A . C . Plant by CFD Code, 11(4), 41–48.
Dutta, P., & Nandi, N. (2015). Effect of Reynolds number and curvature ratio on single phase turbulent flow in pipe bends. Mechanics and Mechanical Engineering, 19(1), 5–16.
Gandhi, B. K., Verma, H. K., & Abraham, B. (2016). Mathematical modeling and simulation of flow velocity profile for rectangular open channels, 5010(January). https://doi.org/10.1080/09715010.2015.1136244
Homicz, G. F. (2004). Computational Fluid Dynamic Simulations of Pipe Elbow Flow. Sand Report, (August). https://doi.org/10.1016/0742-051X(93)90004-Z
Inthavong, K. (2019). A unifying correlation for laminar particle deposition in 90-degree pipe bends. Powder Technology, 345, 99–110. https://doi.org/10.1016/j.powtec.2018.12.095
Jeon, S. Y., Yoon, J. Y., & Shin, M. S. (2010). Flow characteristics and performance evaluation of butterfly valves using numerical analysis. IOP Conference Series: Earth and Environmental Science, 12, 012099. https://doi.org/10.1088/1755-1315/12/1/012099
Kra, E. Y., & Merkley, G. P. (2004). Mathematical modeling of open-channel velocity profiles for float method calibration, 70, 229–244. https://doi.org/10.1016/j.agwat.2004.06.008
Matyka, M. (2004). Solution to two-dimensional Incompressible Navier-Stokes Equations with SIMPLE, SIMPLER and Vorticity-Stream Function Approaches. Driven-Lid Cavity Problem: Solution and Visualization. Online, 39(November), 13. https://doi.org/10.1002/fld
Musa, M. N., & Mukhtar, M. N. H. (2014). Air Flow Analysis in Square Duct Bend. Applied Mechanics and Materials, 695, 622–626. https://doi.org/10.4028/www.scientific.net/amm.695.622
Rahimzadeh, H., Maghsoodi, R., Sarkardeh, H., & Tavakkol, S. (2012). Simulating flow over circular spillways by using different turbulence models. Engineering Applications of Computational Fluid Mechanics, 6(1), 100–109. https://doi.org/10.1080/19942060.2012.11015406
Rieschel, E., & Brandt, L. (2016). A Study on the Flow of Viscous Fluids in a Square Duct, 1–30.
Rup, K., & Sarna, P. (2011). Analysis of turbulent flow through a square-sectioned duct with installed 90-degree elbow. Flow Measurement and Instrumentation, 22(5), 383–391. https://doi.org/10.1016/j.flowmeasinst.2011.06.002
Sarna, P. (2011). MEASUREMENT OF FLOW RATE IN SQUARE-SECTIONED DUCT BEND Kazimierz Rup, (1971), 301–311.
Sudo, K., Sumida, M., & Hibara, H. (2001). Experimental investigation on turbulent flow through a circular-sectioned 180° bend. Experiments in Fluids, 28(1), 51–57. https://doi.org/10.1007/s003480050007
Sutardi, S., Wawan, A. W., Affan, I., Iswati, I., & Sutrisno, M. D. (2010). Experimental study of the effect of guide vane insertion and reynolds numbers on the flow pressure drop in a 90° rectangular elbow. Regional Conference on Mechanical and Aerospace Technology.
Vedovoto, J. M., Serfaty, R., Da, A., & Neto, S. (2015). Mathematical and Numerical Modeling of Turbulent Flows, 87, 1195–1232.
Vidal, A., Vinuesa, R., Schlatter, P., & Nagib, H. M. (2018). International Journal of Heat and Fluid Flow Turbulent rectangular ducts with minimum secondary fl ow. International Journal of Heat and Fluid Flow, 72(November 2017), 317–328. https://doi.org/10.1016/j.ijheatfluidflow.2018.06.014
Wagner, C. (n.d.). SA NE M SC PL O E – C EO AP LS TE S PL O E –, II.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Majamecha
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Seluruh artikel di jurnal ini dapat disebarluaskan dengan tetap mencamtumkan sumber yang sah. Identitas judul artikel tidak boleh dihilangkan. Penerbit tidak bertanggung jawab terhadap naskah yang diplubikasikan. Isi artikel menjadi tanggung jawab penulis.